// Copyright 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:generate stringer -type RoundingMode package number import ( "math" "strconv" ) // RoundingMode determines how a number is rounded to the desired precision. type RoundingMode byte const ( ToNearestEven RoundingMode = iota // towards the nearest integer, or towards an even number if equidistant. ToNearestZero // towards the nearest integer, or towards zero if equidistant. ToNearestAway // towards the nearest integer, or away from zero if equidistant. ToPositiveInf // towards infinity ToNegativeInf // towards negative infinity ToZero // towards zero AwayFromZero // away from zero numModes ) const maxIntDigits = 20 // A Decimal represents a floating point number in decimal format. // Digits represents a number [0, 1.0), and the absolute value represented by // Decimal is Digits * 10^Exp. Leading and trailing zeros may be omitted and Exp // may point outside a valid position in Digits. // // Examples: // // Number Decimal // 12345 Digits: [1, 2, 3, 4, 5], Exp: 5 // 12.345 Digits: [1, 2, 3, 4, 5], Exp: 2 // 12000 Digits: [1, 2], Exp: 5 // 12000.00 Digits: [1, 2], Exp: 5 // 0.00123 Digits: [1, 2, 3], Exp: -2 // 0 Digits: [], Exp: 0 type Decimal struct { digits buf [maxIntDigits]byte } type digits struct { Digits []byte // mantissa digits, big-endian Exp int32 // exponent Neg bool Inf bool // Takes precedence over Digits and Exp. NaN bool // Takes precedence over Inf. } // Digits represents a floating point number represented in digits of the // base in which a number is to be displayed. It is similar to Decimal, but // keeps track of trailing fraction zeros and the comma placement for // engineering notation. Digits must have at least one digit. // // Examples: // // Number Decimal // decimal // 12345 Digits: [1, 2, 3, 4, 5], Exp: 5 End: 5 // 12.345 Digits: [1, 2, 3, 4, 5], Exp: 2 End: 5 // 12000 Digits: [1, 2], Exp: 5 End: 5 // 12000.00 Digits: [1, 2], Exp: 5 End: 7 // 0.00123 Digits: [1, 2, 3], Exp: -2 End: 3 // 0 Digits: [], Exp: 0 End: 1 // scientific (actual exp is Exp - Comma) // 0e0 Digits: [0], Exp: 1, End: 1, Comma: 1 // .0e0 Digits: [0], Exp: 0, End: 1, Comma: 0 // 0.0e0 Digits: [0], Exp: 1, End: 2, Comma: 1 // 1.23e4 Digits: [1, 2, 3], Exp: 5, End: 3, Comma: 1 // .123e5 Digits: [1, 2, 3], Exp: 5, End: 3, Comma: 0 // engineering // 12.3e3 Digits: [1, 2, 3], Exp: 5, End: 3, Comma: 2 type Digits struct { digits // End indicates the end position of the number. End int32 // For decimals Exp <= End. For scientific len(Digits) <= End. // Comma is used for the comma position for scientific (always 0 or 1) and // engineering notation (always 0, 1, 2, or 3). Comma uint8 // IsScientific indicates whether this number is to be rendered as a // scientific number. IsScientific bool } func (d *Digits) NumFracDigits() int { if d.Exp >= d.End { return 0 } return int(d.End - d.Exp) } // normalize returns a new Decimal with leading and trailing zeros removed. func (d *Decimal) normalize() (n Decimal) { n = *d b := n.Digits // Strip leading zeros. Resulting number of digits is significant digits. for len(b) > 0 && b[0] == 0 { b = b[1:] n.Exp-- } // Strip trailing zeros for len(b) > 0 && b[len(b)-1] == 0 { b = b[:len(b)-1] } if len(b) == 0 { n.Exp = 0 } n.Digits = b return n } func (d *Decimal) clear() { b := d.Digits if b == nil { b = d.buf[:0] } *d = Decimal{} d.Digits = b[:0] } func (x *Decimal) String() string { if x.NaN { return "NaN" } var buf []byte if x.Neg { buf = append(buf, '-') } if x.Inf { buf = append(buf, "Inf"...) return string(buf) } switch { case len(x.Digits) == 0: buf = append(buf, '0') case x.Exp <= 0: // 0.00ddd buf = append(buf, "0."...) buf = appendZeros(buf, -int(x.Exp)) buf = appendDigits(buf, x.Digits) case /* 0 < */ int(x.Exp) < len(x.Digits): // dd.ddd buf = appendDigits(buf, x.Digits[:x.Exp]) buf = append(buf, '.') buf = appendDigits(buf, x.Digits[x.Exp:]) default: // len(x.Digits) <= x.Exp // ddd00 buf = appendDigits(buf, x.Digits) buf = appendZeros(buf, int(x.Exp)-len(x.Digits)) } return string(buf) } func appendDigits(buf []byte, digits []byte) []byte { for _, c := range digits { buf = append(buf, c+'0') } return buf } // appendZeros appends n 0 digits to buf and returns buf. func appendZeros(buf []byte, n int) []byte { for ; n > 0; n-- { buf = append(buf, '0') } return buf } func (d *digits) round(mode RoundingMode, n int) { if n >= len(d.Digits) { return } // Make rounding decision: The result mantissa is truncated ("rounded down") // by default. Decide if we need to increment, or "round up", the (unsigned) // mantissa. inc := false switch mode { case ToNegativeInf: inc = d.Neg case ToPositiveInf: inc = !d.Neg case ToZero: // nothing to do case AwayFromZero: inc = true case ToNearestEven: inc = d.Digits[n] > 5 || d.Digits[n] == 5 && (len(d.Digits) > n+1 || n == 0 || d.Digits[n-1]&1 != 0) case ToNearestAway: inc = d.Digits[n] >= 5 case ToNearestZero: inc = d.Digits[n] > 5 || d.Digits[n] == 5 && len(d.Digits) > n+1 default: panic("unreachable") } if inc { d.roundUp(n) } else { d.roundDown(n) } } // roundFloat rounds a floating point number. func (r RoundingMode) roundFloat(x float64) float64 { // Make rounding decision: The result mantissa is truncated ("rounded down") // by default. Decide if we need to increment, or "round up", the (unsigned) // mantissa. abs := x if x < 0 { abs = -x } i, f := math.Modf(abs) if f == 0.0 { return x } inc := false switch r { case ToNegativeInf: inc = x < 0 case ToPositiveInf: inc = x >= 0 case ToZero: // nothing to do case AwayFromZero: inc = true case ToNearestEven: // TODO: check overflow inc = f > 0.5 || f == 0.5 && int64(i)&1 != 0 case ToNearestAway: inc = f >= 0.5 case ToNearestZero: inc = f > 0.5 default: panic("unreachable") } if inc { i += 1 } if abs != x { i = -i } return i } func (x *digits) roundUp(n int) { if n < 0 || n >= len(x.Digits) { return // nothing to do } // find first digit < 9 for n > 0 && x.Digits[n-1] >= 9 { n-- } if n == 0 { // all digits are 9s => round up to 1 and update exponent x.Digits[0] = 1 // ok since len(x.Digits) > n x.Digits = x.Digits[:1] x.Exp++ return } x.Digits[n-1]++ x.Digits = x.Digits[:n] // x already trimmed } func (x *digits) roundDown(n int) { if n < 0 || n >= len(x.Digits) { return // nothing to do } x.Digits = x.Digits[:n] trim(x) } // trim cuts off any trailing zeros from x's mantissa; // they are meaningless for the value of x. func trim(x *digits) { i := len(x.Digits) for i > 0 && x.Digits[i-1] == 0 { i-- } x.Digits = x.Digits[:i] if i == 0 { x.Exp = 0 } } // A Converter converts a number into decimals according to the given rounding // criteria. type Converter interface { Convert(d *Decimal, r RoundingContext) } const ( signed = true unsigned = false ) // Convert converts the given number to the decimal representation using the // supplied RoundingContext. func (d *Decimal) Convert(r RoundingContext, number interface{}) { switch f := number.(type) { case Converter: d.clear() f.Convert(d, r) case float32: d.ConvertFloat(r, float64(f), 32) case float64: d.ConvertFloat(r, f, 64) case int: d.ConvertInt(r, signed, uint64(f)) case int8: d.ConvertInt(r, signed, uint64(f)) case int16: d.ConvertInt(r, signed, uint64(f)) case int32: d.ConvertInt(r, signed, uint64(f)) case int64: d.ConvertInt(r, signed, uint64(f)) case uint: d.ConvertInt(r, unsigned, uint64(f)) case uint8: d.ConvertInt(r, unsigned, uint64(f)) case uint16: d.ConvertInt(r, unsigned, uint64(f)) case uint32: d.ConvertInt(r, unsigned, uint64(f)) case uint64: d.ConvertInt(r, unsigned, f) default: d.NaN = true // TODO: // case string: if produced by strconv, allows for easy arbitrary pos. // case reflect.Value: // case big.Float // case big.Int // case big.Rat? // catch underlyings using reflect or will this already be done by the // message package? } } // ConvertInt converts an integer to decimals. func (d *Decimal) ConvertInt(r RoundingContext, signed bool, x uint64) { if r.Increment > 0 { // TODO: if uint64 is too large, fall back to float64 if signed { d.ConvertFloat(r, float64(int64(x)), 64) } else { d.ConvertFloat(r, float64(x), 64) } return } d.clear() if signed && int64(x) < 0 { x = uint64(-int64(x)) d.Neg = true } d.fillIntDigits(x) d.Exp = int32(len(d.Digits)) } // ConvertFloat converts a floating point number to decimals. func (d *Decimal) ConvertFloat(r RoundingContext, x float64, size int) { d.clear() if math.IsNaN(x) { d.NaN = true return } // Simple case: decimal notation if r.Increment > 0 { scale := int(r.IncrementScale) mult := 1.0 if scale >= len(scales) { mult = math.Pow(10, float64(scale)) } else { mult = scales[scale] } // We multiply x instead of dividing inc as it gives less rounding // issues. x *= mult x /= float64(r.Increment) x = r.Mode.roundFloat(x) x *= float64(r.Increment) x /= mult } abs := x if x < 0 { d.Neg = true abs = -x } if math.IsInf(abs, 1) { d.Inf = true return } // By default we get the exact decimal representation. verb := byte('g') prec := -1 // As the strconv API does not return the rounding accuracy, we can only // round using ToNearestEven. if r.Mode == ToNearestEven { if n := r.RoundSignificantDigits(); n >= 0 { prec = n } else if n = r.RoundFractionDigits(); n >= 0 { prec = n verb = 'f' } } else { // TODO: At this point strconv's rounding is imprecise to the point that // it is not useable for this purpose. // See https://github.com/golang/go/issues/21714 // If rounding is requested, we ask for a large number of digits and // round from there to simulate rounding only once. // Ideally we would have strconv export an AppendDigits that would take // a rounding mode and/or return an accuracy. Something like this would // work: // AppendDigits(dst []byte, x float64, base, size, prec int) (digits []byte, exp, accuracy int) hasPrec := r.RoundSignificantDigits() >= 0 hasScale := r.RoundFractionDigits() >= 0 if hasPrec || hasScale { // prec is the number of mantissa bits plus some extra for safety. // We need at least the number of mantissa bits as decimals to // accurately represent the floating point without rounding, as each // bit requires one more decimal to represent: 0.5, 0.25, 0.125, ... prec = 60 } } b := strconv.AppendFloat(d.Digits[:0], abs, verb, prec, size) i := 0 k := 0 beforeDot := 1 for i < len(b) { if c := b[i]; '0' <= c && c <= '9' { b[k] = c - '0' k++ d.Exp += int32(beforeDot) } else if c == '.' { beforeDot = 0 d.Exp = int32(k) } else { break } i++ } d.Digits = b[:k] if i != len(b) { i += len("e") pSign := i exp := 0 for i++; i < len(b); i++ { exp *= 10 exp += int(b[i] - '0') } if b[pSign] == '-' { exp = -exp } d.Exp = int32(exp) + 1 } } func (d *Decimal) fillIntDigits(x uint64) { if cap(d.Digits) < maxIntDigits { d.Digits = d.buf[:] } else { d.Digits = d.buf[:maxIntDigits] } i := 0 for ; x > 0; x /= 10 { d.Digits[i] = byte(x % 10) i++ } d.Digits = d.Digits[:i] for p := 0; p < i; p++ { i-- d.Digits[p], d.Digits[i] = d.Digits[i], d.Digits[p] } } var scales [70]float64 func init() { x := 1.0 for i := range scales { scales[i] = x x *= 10 } }